On the Classification Between $$\psi$$-Ontic and $$\psi$$-Epistemic Ontological Models

Author:

Oldofredi AndreaORCID,López Cristian

Abstract

AbstractHarrigan and Spekkens (Found Phys 40:125–157, 2010) provided a categorization of quantum ontological models classifying them as $$\psi$$ ψ -ontic or $$\psi$$ ψ -epistemic if the quantum state $$\psi$$ ψ describes respectively either a physical reality or mere observers’ knowledge. Moreover, they claimed that Einstein—who was a supporter of the statistical interpretation of quantum mechanics—endorsed an epistemic view of $$\psi .$$ ψ . In this essay we critically assess such a classification and some of its consequences by proposing a twofold argumentation. Firstly, we show that Harrigan and Spekkens’ categorization implicitly assumes that a complete description of a quantum system (its ontic state, $$\lambda$$ λ ) only concerns single, individual systems instantiating absolute, intrinsic properties. Secondly, we argue that such assumptions conflict with some current interpretations of quantum mechanics, which employ different ontic states as a complete description of quantum systems. In particular, we will show that, since in the statistical interpretation ontic states describe ensembles rather than individuals, such a view cannot be considered $$\psi$$ ψ -epistemic. As a consequence, the authors misinterpreted Einstein’s view concerning the nature of the quantum state. Next, we will focus on relational quantum mechanics and perspectival quantum mechanics, which in virtue of their relational and perspectival metaphysics employ ontic states $$\lambda$$ λ dealing with relational properties. We conclude that Harrigan and Spekkens’ categorization is too narrow and entails an inadequate classification of the mentioned interpretations of quantum theory. Hence, any satisfactory classification of quantum ontological models ought to take into account the variations of $$\lambda$$ λ across different interpretations of quantum mechanics.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

University of Lausanne

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3