Use of Geophysical and Radar Interferometric Techniques to Monitor Land Deformation Associated with the Jazan Salt Diapir, Jazan city, Saudi Arabia

Author:

Pankratz Hannah G.,Sultan MohamedORCID,Abdelmohsen Karem,Sauck William A.,Alsefry Saleh,Alharbi Hassan,Emil Mustafa K.,Gebremichael Esayas,Asaeidi Ali,Alshehri Fahad,Hashim Hisham I.,Al-Shamrani Haitham A.,El-Sahly Mubark

Abstract

AbstractUsing integrated Interferometric Synthetic Aperture Radar (InSAR) datasets (Envisat: 2003–2009; Sentinel-1: 2014–2018), local gravity surveys, and passive seismic data, we investigated the environmental hazards associated with the rise of the Miocene Jazan salt diapir (JZD; ~ 2 km2) within Jazan city, Saudi Arabia, and identified areas at risk in its immediate surroundings. Our findings include (1) the JZD outcrop and its northern, southern and western bordering areas have been undergoing substantial uplift (up to 4.7 mm/yr), whereas the sabkhas to the east are witnessing subsidence (up to − 7.5 mm/yr); (2) a low Bouguer anomaly (7.5 mGal) was observed over the JZD relative to its surroundings (8.5–12 mGal) with the steepest gradient along its eastern side; (3) strong and clear horizontal/vertical (H/V) spectral ratio peak and high frequency (5–10 Hz) over the JZD outcrop and areas proximal to its western margin, but areas to the east have a weak H/V peak and low frequency (1.5-3 Hz); (4) drilling confirmed presence of a shallow (4 m) salt bedrock layer west of the JZD and the absence of this layer to its east (up to depths of 60 m); (5) uplift patterns along the diapir margins are indicative of near-vertical contact along the JZD eastern margin and less steep contacts along the remaining margins; and (6) additional near-surface diapirs could potentially be identified in the vicinity of the JZD using our integrated approach.

Funder

Saudi Geological Survey

Western Michigan University

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3