Abstract
In this work, we combine some of the most relevant artificial intelligence (AI) techniques with a range-resolved interferometry (RRI) instrument applied to the maintenance of a wind turbine. This method of automatic and autonomous learning can identify, monitor, and detect the electrical and mechanical components of wind turbines to predict, detect, and anticipate their degeneration. A scanner laser is used to detect vibrations in two different failure states. Following each working cycle, RRI in-process measurements agree with in-process hand measurements of on-machine micrometers, as well as laser scanning in-process measurements. As a result, the proposed method should be very useful for supervising and diagnosing wind turbine faults in harsh environments. In addition, it will be able to perform in-process measurements at low costs.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献