Mass Variations in Terrestrial Water Storage over the Nile River Basin and Mega Aquifer System as Deduced from GRACE-FO Level-2 Products and Precipitation Patterns from GPCP Data

Author:

Elsaka BasemORCID,Abdelmohsen KaremORCID,Alshehri Fahad,Zaki AhmedORCID,El-Ashquer MohamedORCID

Abstract

Changes in the terrestrial total water storage (TWS) have been estimated at both global and river basin scales from the Gravity Recovery and Climate Experiment (GRACE) mission and are still being detected from its GRACE Follow-On (GRACE-FO) mission. In this contribution, the sixth release of GRACE-FO (RL06) level-2 products applying DDK5 (decorrelation filter) were used to detect water mass variations for the Nile River Basin (NRB) in Africa and the Mega Aquifer System (MAS) in Asia. The following approach was implemented to detect the mass variation over the NRB and MAS: (1) TWS mass (June 2018–June 2021) was estimated by converting the spherical harmonic coefficients from the decorrelation filter DDK 5 of the GRACE-FO Level-2 RL06 products into equivalent water heights, where the TWS had been re-produced after removing the mean temporal signal (2) Precipitation data from Global Precipitation Climatology Project was used to investigate the pattern of change over the study area. Our findings include: (1) during the GRACE-FO period, the mass variations extracted from the RL06-DDK5 solutions from the three official centers—CSR, JPL, and GFZ—were found to be consistent with each other, (2) The NRB showed substantial temporal TWS variations, given a basin average of about 6 cm in 2019 and about 12 cm in 2020 between September and November and a lower basin average of about −9 cm in 2019 and −6 cm in 2020 in the wet seasons between March and May, while mass variations for the MAS had a relatively weaker temporal TWS magnitude, (3) the observed seasonal signal over the NRB was attributed to the high intensity of the precipitation events over the NRB (AAP: 1000–1800 mm yr−1), whereas the lack of the seasonal TWS signal over the MAS was due to the low intensity of the precipitation events over the MAS (AAP: 180–500 mm yr−1).

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3