Quantifying Multi-Source Uncertainties in GRACE-Based Estimates of Groundwater Storage Changes in Mainland China

Author:

Li Quanzhou12,Pan Yun12ORCID,Zhang Chong12,Gong Huili12

Affiliation:

1. Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China

2. College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China

Abstract

The Gravity Recovery and Climate Experiment (GRACE) satellites have been widely used to estimate groundwater storage (GWS) changes, yet their uncertainties related to the multi-source datasets used are rarely investigated. This study focuses on quantifying the uncertainties of GRACE GWS estimates in mainland China during 2003–2015, by generating a total of 3456 solutions from the combinations of multiple GRACE products and auxiliary datasets. The Bayesian model averaging (BMA) approach is used to derive the optimal estimates of GWS changes under an uncertainty framework. Ten river basins are further identified to analyze the estimated annual GWS trends and uncertainty magnitudes. On average, our results show that the BMA-estimated annual GWS trend in mainland China is −1.93 mm/yr, whereas its uncertainty reaches 4.50 mm/yr. Albeit the estimated annual GWS trends and uncertainties vary across river basins, we found that the high uncertainties of annual GWS trends are tied to the large differences between multiple GRACE data and soil moisture products used in the GWS solutions. These findings highlight the importance of paying more attention to the existence of multi-source uncertainties when using GRACE data to estimate GWS changes.

Funder

National Natural Science Foundation of China

Second Tibetan Plateau Scientific Expedition and Research Program

Strategic Priority Research Program of the Chinese Academy of Sciences

Natural Science Foundation of Beijing Municipality

China Postdoctoral Science Foundation

Beijing Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3