1. Bloch, I., & Gibel, P. (2011). Un modèle d’analyse des raisonnements dans les situations didactiques. Étude des niveaux de preuves dans une situation d’enseignement de la notion de limite. (A model for analyzing the reasoning produced in didactic situations: A study of different levels of proof in teaching the concept of limit). Recherches en didactique des mathématiques, 31(2), 191–228.
2. Cobb, P., Stephan, M., MacClain, K., & Gravemeijer, K. (2001). Participating in mathematical practices. The Journal of Learning Sciences, 10(1/2), 113–163. https://doi.org/10.1207/S15327809JLS10-1-2_6
3. Davydov, V. V. (1990). Soviet studies in mathematics education: Vol. 2. Types of generalization in instruction: Logical and psychological problems in the structuring of school curricula (J. Kilpatrick, Ed., & J. Teller, Trans.). National Council of Teachers of Mathematics. [Original work published in 1972]
4. Devaney, R. L. (1990). Chaos, fractals and dynamics – computer experiments in mathematics. Addison-Wesley.
5. Devaney, R. L. (1998). Chaos in the classroom. In R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space. Lawrence Erlbaum Associates.