Multiscale model diagnostics

Author:

Mannseth TrondORCID

Abstract

AbstractI consider the problem of model diagnostics, that is, the problem of criticizing a model prior to history matching by comparing data to an ensemble of simulated data based on the prior model (prior predictions). If the data are not deemed as a credible prior prediction by the model diagnostics, some settings of the model should be changed before history matching is attempted. I particularly target methodologies that are computationally feasible for large models with large amounts of data. A multiscale methodology, that can be applied to analyze differences between data and prior predictions in a scale-by-scale fashion, is proposed for this purpose. The methodology is computationally inexpensive, straightforward to apply, and can handle correlated observation errors without making approximations. The multiscale methodology is tested on a set of toy models, on two simplistic reservoir models with synthetic data, and on real data and prior predictions from the Norne field. The tests include comparisons with a previously published method (termed the Mahalanobis methodology in this paper). For the Norne case, both methodologies led to the same decisions regarding whether to accept or discard the data as a credible prior prediction. The multiscale methodology led to correct decisions for the toy models and the simplistic reservoir models. For these models, the Mahalanobis methodology either led to incorrect decisions, and/or was unstable with respect to selection of the ensemble of prior predictions.

Funder

NORCE Norwegian Research Centre AS

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3