Ensemble-Based Closed-Loop Optimization Applied to Brugge Field

Author:

Chen Yan1,Oliver Dean S.2

Affiliation:

1. Chevron Energy Technology Company

2. University of Oklahoma

Abstract

Summary In this paper, ensemble-based closed-loop optimization is applied to a large-scale SPE benchmark study. The Brugge field, a synthetic reservoir, is designed as a common platform to test different closed-loop reservoir management methods. The problem was designed to mimic real field management scenarios and, as a result, is by far the largest and most complex test case on closed-loop optimization. The Brugge field model consists of nine layers with a total of 44,550 active cells. It has one internal fault and seven rock regions with different relative permeability and capillary pressure functions. There are 20 producers and 10 injectors in the field. Noise corrupted production data are provided monthly. Each well has three different completions that can be controlled independently. The producing life of the reservoir is 30 years, and the objective of optimization is to maximize the net present value (NPV) at the end of 30 years. Because of the complexity of this test case, several advanced techniques are used in order to improve the solution of the ensemble-based closed-loop optimization. First, covariance localization was used to obtain good model updates with a relatively small ensemble of reservoir models. Localization alleviated the effect of spurious correlations and made it possible to incorporate large amounts of data. Second, covariance inflation was used to compensate for the tendency of small ensembles to lose variability too quickly. When covariance inflation was used together with localization, variability in the ensemble was maintained. Third, regularization was also used in the ensemble-based optimization to reduce the effect of spurious correlations and to smooth the optimized control parameters. Fourth, normalized saturations were used in the state vector because different rock regions had different relative permeability endpoint saturations. Finally, the addition of global parameters such as relative permeability curves and initial oil/water contact (IOWC) reduced the tendency for overshoot. The resulting combination of ensemble-based data assimilation and optimization performed very well on the benchmark study, achieving an NPV within 1% of the value obtained by the test organizers with known geology.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3