Evaluating prior predictions of production and seismic data

Author:

Alfonzo MiguelORCID,Oliver Dean S.

Abstract

Abstract It is common in ensemble-based methods of history matching to evaluate the adequacy of the initial ensemble of models through visual comparison between actual observations and data predictions prior to data assimilation. If the model is appropriate, then the observed data should look plausible when compared to the distribution of realizations of simulated data. The principle of data coverage alone is, however, not an effective method for model criticism, as coverage can often be obtained by increasing the variability in a single model parameter. In this paper, we propose a methodology for determining the suitability of a model before data assimilation, particularly aimed for real cases with large numbers of model parameters, large amounts of data, and correlated observation errors. This model diagnostic is based on an approximation of the Mahalanobis distance between the observations and the ensemble of predictions in high-dimensional spaces. We applied our methodology to two different examples: a Gaussian example which shows that our shrinkage estimate of the covariance matrix is a better discriminator of outliers than the pseudo-inverse and a diagonal approximation of this matrix; and an example using data from the Norne field. In this second test, we used actual production, repeat formation tester, and inverted seismic data to evaluate the suitability of the initial reservoir simulation model and seismic model. Despite the good data coverage, our model diagnostic suggested that model improvement was necessary. After modifying the model, it was validated against the observations and is now ready for history matching to production and seismic data. This shows that the proposed methodology for the evaluation of the adequacy of the model is suitable for large realistic problems.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computers in Earth Sciences,Computer Science Applications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3