Flow Regime-Dependent, Discharge Uncertainty Envelope for Uncertainty Analysis with Ensemble Methods

Author:

Martin Nick1ORCID,White Jeremy2ORCID

Affiliation:

1. Southwest Research Institute, San Antonio, TX 78238, USA

2. INTERA Geosciences Pty Ltd., Perth, WA 6000, Australia

Abstract

A discharge uncertainty envelope is presented that provides an observation error model for data assimilation (DA) using discharge observations derived from measurement of stage using a rating curve. It uniquely represents the rating curve representation error, which is due to scale and process incompatibility between the rating curve hydrodynamic model and “true” discharge, within the observation error model. Ensemble methods, specifically, the iterative ensemble smoother (IES) algorithms in PEST++, provide the DA framework for this observation error model. The purpose of the uncertainty envelope is to describe prior observation uncertainty for ensemble methods of DA. Envelope implementation goals are (1) limiting the spread of the envelope to avoid conditioning to extreme parameter values and producing posterior parameter distributions with increased variance, and (2) incorporating a representative degree of observation uncertainty to avoid overfitting, which will introduce bias into posterior parameter estimates and predicted model outcomes. The expected uncertainty envelope is flow regime dependent and is delineated using stochastic, statistical methods before undertaking history matching with IES. Analysis of the goodness-of-fit between stochastically estimated “true” discharge and observed discharge provides criteria for the selection of best-fit parameter ensembles from IES results.

Funder

Southwest Research Institute Internal Research and Development

Texas State University Subaward

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference31 articles.

1. Evensen, G., Vossepoel, F., and Jan van Leeuwen, P. (2022). Data Assimilation Fundamentals: A Unified Formulation of the State and Parameter Estimation Problem, Springer.

2. Doherty, J. (2023, February 27). PEST: Model Independent Parameter Estimation & Uncertainty Analysis. Available online: https://pesthomepage.org.

3. Pest++ Development Team (2022, October 24). PEST++: Software Suite for Parameter Estimation, Uncertainty Quantification, Management Optimization, and Sensitivity Analysis. Version 5.1.18. User Manual. Available online: https://github.com/usgs/pestpp.

4. Doherty, J. (2015). Calibration and Uncertainty Analysis for Complex Environmental Models. PEST: Complete Theory and What It Means for Modelling the Real World, Watermark Numerical Computing.

5. The error of representation: Basic understanding;Hodyss;Tellus A Dyn. Meteorol. Oceanogr.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3