Exopolysaccharide production from Alkalibacillus sp. w3: statistical optimization and biological activity

Author:

Arayes Mervat A.,Mabrouk Mona E. M.,Sabry Soraya A.,Abdella BahaaORCID

Abstract

AbstractMicrobial exopolysaccharides (EPS) provide a broad range of applications. Thus, there is an increasing interest in the production, characterization, and use of EPS derived from various microorganisms. Extremophile polysaccharides have unique properties and applications due to its unique structures. The importance of exopolysaccharides synthesized by a new bacterial strain, Alkalibacillus sp. w3, was highlighted in this study. Alkalibacillus sp. w3, a haloalkalitolerant firmicute that was recovered from a salt lake, was optimized for EPS production, and its biological activities were studied. Exopolysaccharide synthesis was observed in Horikoshi I broth medium. The optimal culture conditions for achieving the highest exopolysaccharide production were a 7-day incubation period, pH 10, and 250 g/L of NaCl. The most effective carbon and nitrogen sources for EPS production were glucose and a combination of yeast extract and peptone. Additionally, Plackett-statistical Burman’s design showed that all factors tested had a favorable impact, with glucose having the greatest significance on the production of EPS. The model’s best predictions for culture conditions resulted in a two-fold improvement in EPS production compared to the original yield before optimization. The recovered EPS contained 65.13% carbohydrates, 30.89% proteins, and 3.98% lipids. Moreover, EPS produced by Alkalibacillus sp. w3 demonstrated anticancer activity against hepatocellular carcinoma (HepG2) and human colon carcinoma (HCT-116) cell lines, with IC50 values as low as 11.8 and 15.5 µg/mL, respectively, besides antibacterial activity against various Gram-positive, Gram-negative bacteria, and yeast. Based on these results, EPS made by Alkalibacillus sp. w3 has many useful properties, which make it suitable for use in the medical field.

Funder

Kafr El Shiekh University

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Plant Science,Genetics,Molecular Biology,Animal Science and Zoology,Biochemistry,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3