Abstract
AbstractCold-active lipases are presently employed extensively in the detergent, chemical intermediate, fine chemical, food, and pharmaceutical industries. Seven cold-adaptive bacteria were isolated from the Mediterranean Sea near Alexandria, Egypt, and tested for their ability to produce cold-active lipase, with the highest activity at 10 °C. The most potent isolate was Pseudomonas sp. A6. To determine the most important variables, the bacterium was exposed to a necessary medium component and environmental factor screening using a single factor-at-a-time approach, followed by a multifactorial Plackett-Burman design strategy. After purification and characterization, the optimal activity levels for the cold-active lipase were figured out. Inoculation of Pseudomonas A6 under near optimum conditions using medium consisting of (g/L) peptone 7.14; soybean oil 7.5% (v/v); K2HPO4, 0.4; MgSO4, 0.1; glucose 2; pH 8; and temperature 10 °C led to a maximum lipase activity anticipated to be 23.36 U/mL. Purified lipase showed the best activity and thermal stability at a pH of 8 and a temperature of 10 °C. The Pseudomonas A6 lipase tolerated the monovalent ions, while greater valence ions did not.
Funder
Kafr El Shiekh University
Publisher
Springer Science and Business Media LLC
Subject
Microbiology,Computer Networks and Communications,Hardware and Architecture,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献