Jackdaws form categorical prototypes based on experience with category exemplars

Author:

Apostel AylinORCID,Hahn Lukas AlexanderORCID,Rose JonasORCID

Abstract

AbstractCategorization represents one cognitive ability fundamental to animal behavior. Grouping of elements based on perceptual or semantic features helps to reduce processing resources and facilitates appropriate behavior. Corvids master complex categorization, yet the detailed categorization learning strategies are less well understood. We trained two jackdaws on a delayed match to category paradigm using a novel, artificial stimulus type, RUBubbles. Both birds learned to differentiate between two session-unique categories following two distinct learning protocols. Categories were either introduced via central category prototypes (low variability approach) or using a subset of diverse category exemplars from which diagnostic features had to be identified (high variability approach). In both versions, the stimulus similarity relative to a central category prototype explained categorization performance best. Jackdaws consistently used a central prototype to judge category membership, regardless of whether this prototype was used to introduce distinct categories or had to be inferred from multiple exemplars. Reliance on a category prototype occurred already after experiencing only a few trials with different category exemplars. High stimulus set variability prolonged initial learning but showed no consistent beneficial effect on later generalization performance. High numbers of stimuli, their perceptual similarity, and coherent category structure resulted in a prototype-based strategy, reflecting the most adaptive, efficient, and parsimonious way to represent RUBubble categories. Thus, our birds represent a valuable comparative animal model that permits further study of category representations throughout learning in different regions of a brain producing highly cognitive behavior. Graphical abstract

Funder

Deutsche Forschungsgemeinschaft

Ruhr-Universität Bochum

Publisher

Springer Science and Business Media LLC

Subject

Histology,General Neuroscience,Anatomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3