Abstract
AbstractGrouping objects into discrete categories affects how we perceive the world and represents a crucial element of cognition. Categorization is a widespread phenomenon that has been thoroughly studied. However, investigating categorization learning poses several requirements on the stimulus set in order to control which stimulus feature is used and to prevent mere stimulus–response associations or rote learning. Previous studies have used a wide variety of both naturalistic and artificial categories, the latter having several advantages such as better control and more direct manipulation of stimulus features. We developed a novel stimulus type to study categorization learning, which allows a high degree of customization at low computational costs and can thus be used to generate large stimulus sets very quickly. ‘RUBubbles’ are designed as visual artificial category stimuli that consist of an arbitrary number of colored spheres arranged in 3D space. They are generated using custom MATLAB code in which several stimulus parameters can be adjusted and controlled separately, such as number of spheres, position in 3D-space, sphere size, and color. Various algorithms for RUBubble generation can be combined with distinct behavioral training protocols to investigate different characteristics and strategies of categorization learning, such as prototype- vs. exemplar-based learning, different abstraction levels, or the categorization of a sensory continuum and category exceptions. All necessary MATLAB code is freely available as open-source code and can be customized or expanded depending on individual needs. RUBubble stimuli can be controlled purely programmatically or via a graphical user interface without MATLAB license or programming experience.
Graphical abstract
Publisher
Springer Science and Business Media LLC
Subject
General Psychology,Psychology (miscellaneous),Arts and Humanities (miscellaneous),Developmental and Educational Psychology,Experimental and Cognitive Psychology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献