Large Isotropic Elastic Deformations: On a Comprehensive Model to Correlate the Theory and Experiments for Incompressible Rubber-Like Materials

Author:

Anssari-Benam AfshinORCID

Abstract

AbstractA comprehensive model, i.e., a model that: (i) suitably captures the mechanical behaviour of various types of rubber-like materials; (ii) describes the constitutive behaviour of a subject rubber-like specimen under different deformation modes via a single set of model parameter values, and (iii) is parent to many of the existing models of distinct types, is presented in this paper for application to the finite deformation of incompressible isotropic rubber-like materials. The model breaks away from Rivlin’s principal invariants $I_{i}$ I i and Valanis-Landel’s separable function of principal stretches $\lambda _{i}$ λ i representations, and instead adopts a general non-separable functional form $W( \lambda _{1}, \lambda _{2}, \lambda _{3} )$ W ( λ 1 , λ 2 , λ 3 ) , subject to the incompressibility constraint. By way of example, the application of the model to extant datasets from four types of rubber-like materials that exhibit discernible mechanical behaviours, namely natural unfilled and filled rubbers, hydrogels and (extremely) soft tissue specimens, will be considered. The favourable correlation between the model predictions and the considered experimental datasets, obtained via simultaneous fitting of the model to the data of various deformations, will be demonstrated. It will be shown that most of the landmark models in the literature including the $W( I_{1}, I_{2} )$ W ( I 1 , I 2 ) form Mooney-Rivlin, the Gent-like limiting chain extensibility, the nonaffine tube and the separable principal stretches-based type Ogden models are all a special sub-set of the presented parent model, and are all recovered from this model. An important implication of the non-separable functional form of the model will be conferred, through a specific dataset, where the predictions of the separable functions prove inherently inadequate. The consequences of these improvements for a more accurate modelling of the finite deformation of incompressible isotropic rubber-like materials will also be discussed.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3