Affiliation:
1. Cardiovascular Engineering Research Lab (CERL), School of Mechanical and Design Engineering, University of Portsmouth , Anglesea Road, Portsmouth PO1 3DJ, UK
2. Dipartimento di Ingegneria, Universita degli studi di Perugia , Via G. Duranti, Perugia 06125, Italy
Abstract
Abstract
The continuous softening behavior of the brain tissue, i.e., the softening in the primary loading path with an increase in deformation, is modeled in this work as a state of hyperelasticity up to the onset of failure. That is, the softening behavior is captured via a core hyperelastic model without the addition of damage variables and/or functions. Examples of the application of the model will be provided to extant datasets of uniaxial tension and simple shear deformations, demonstrating the capability of the model to capture the whole-range deformation of the brain tissue specimens, including their softening behavior. Quantitative and qualitative comparisons with other models within the brain biomechanics literature will also be presented, showing the clear advantages of the current approach. The application of the model is then extended to capturing the rate-dependent softening behavior of the tissue by allowing the parameters of the core hyperelastic model to evolve, i.e., vary, with the deformation rate. It is shown that the model captures the rate-dependent and softening behaviors of the specimens favorably and also predicts the behavior at other rates. These results offer a clear set of advantages in favor of the considered modeling approach here for capturing the quasi-static and rate-dependent mechanical properties of the brain tissue, including its softening behavior, over the existing models in the literature, which at best may purport to capture only a reduced set of the foregoing behaviors, and with ill-posed effects.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献