Effect of temperature and humidity on mechanical properties and constitutive modeling of pressure-sensitive adhesives

Author:

Luo Weiquan,Chen Wenzhen,Liu Dashun,Huang Xiaofeng,Ma Baoguang

Abstract

AbstractPressure-sensitive adhesives (PSAs) are crucial for the structural and functional integrity of flexible displays. Investigating the intricate mechanical properties of PSAs can help enhance product quality and performance. This study conducts systematic mechanical tests, including uniaxial tensile, compression, planar shear, and stress relaxation, on PSAs at temperatures ranging from – 25 to 85 ℃ and relative humidity levels from 0 to 90%. Our findings reveal that the Anssari-Benam model accurately describes the hyperelastic behavior of PSA materials under large deformation, outperforming the Ogden model by requiring fewer parameters and better preserving convexity. Moreover the results show that temperature markedly affects PSA properties, particularly near the glass transition temperature (Tg), with lower temperatures leading to decreased elasticity and higher temperatures aiding in stress relaxation. Similarly, humidity impacts PSA behavior, increasing elasticity and decreasing stiffness, especially noticeable in stress relaxation tests. These findings highlight the substantial influence of environmental conditions on the material properties of PSAs and underscore the necessity of understanding both hyperelastic and viscoelastic responses for their application in flexible technologies. This research provides critical insights for the optimal utilization of PSAs in the rapidly evolving field of flexible electronics, including OLED displays.

Funder

Science and Technological Bureau of Guangzhou Huangpu District

Changzhou Municipal Science and Technology Bureau

Department of Science and Technology of Guangdong Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3