3D bending simulation and mechanical properties of the OLED bending area

Author:

Ma Liang1,Gu Jinan1

Affiliation:

1. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212000, China

Abstract

AbstractDue to the poor mechanical properties of traditional simulation models of the organic light-emitting device (OLED) bending area, this article puts forward a finite element model of 3D bending simulation of the OLED bending area. During the model construction, it is necessary to determine the viscoelastic and hyperelastic mechanical properties, respectively. In order to accurately obtain the stress changes of material deformation during the hyperelasticity determination, a uniaxial tensile test and a shear test were used to obtain data and thus to characterize the hyperelastic properties. In order to measure the viscoelasticity, a stress relaxation test was used to draw the stress relaxation curve, so as to characterize the viscoelastic properties. Then, the plane or axisymmetric stress–strain analysis was achieved, and the material parameters of the 3D model of the OLED bending area were obtained. Finally, the 3D model was applied to the 3D bending of the OLED bending area. Combined with the axisymmetric finite element analysis method, the 3D bending simulation finite element model of the OLED bending area was constructed by dividing the finite element mesh. Experimental results show that the mechanical properties of the proposed model are better than those of traditional OLED bending simulation models. Meanwhile, the proposed model has stronger application advantages.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3