[18F]FDG PET radiomics to predict disease-free survival in cervical cancer: a multi-scanner/center study with external validation

Author:

Ferreira Marta,Lovinfosse Pierre,Hermesse Johanne,Decuypere Marjolein,Rousseau Caroline,Lucia François,Schick Ulrike,Reinhold Caroline,Robin Philippe,Hatt Mathieu,Visvikis Dimitris,Bernard Claire,Leijenaar Ralph T. H.,Kridelka Frédéric,Lambin Philippe,Meyer Patrick E.,Hustinx Roland

Abstract

Abstract Purpose To test the performances of native and tumour to liver ratio (TLR) radiomic features extracted from pre-treatment 2-[18F] fluoro-2-deoxy-D-glucose ([18F]FDG) PET/CT and combined with machine learning (ML) for predicting cancer recurrence in patients with locally advanced cervical cancer (LACC). Methods One hundred fifty-eight patients with LACC from multiple centers were retrospectively included in the study. Tumours were segmented using the Fuzzy Local Adaptive Bayesian (FLAB) algorithm. Radiomic features were extracted from the tumours and from regions drawn over the normal liver. Cox proportional hazard model was used to test statistical significance of clinical and radiomic features. Fivefold cross validation was used to tune the number of features. Seven different feature selection methods and four classifiers were tested. The models with the selected features were trained using bootstrapping and tested in data from each scanner independently. Reproducibility of radiomics features, clinical data added value and effect of ComBat-based harmonisation were evaluated across scanners. Results After a median follow-up of 23 months, 29% of the patients recurred. No individual radiomic or clinical features were significantly associated with cancer recurrence. The best model was obtained using 10 TLR features combined with clinical information. The area under the curve (AUC), F1-score, precision and recall were respectively 0.78 (0.67–0.88), 0.49 (0.25–0.67), 0.42 (0.25–0.60) and 0.63 (0.20–0.80). ComBat did not improve the predictive performance of the best models. Both the TLR and the native models performance varied across scanners used in the test set. Conclusion [18F]FDG PET radiomic features combined with ML add relevant information to the standard clinical parameters in terms of LACC patient’s outcome but remain subject to variability across PET/CT devices.

Funder

Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,General Medicine,Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3