Impact of Preprocessing Parameters in Medical Imaging-Based Radiomic Studies: A Systematic Review

Author:

Trojani Valeria1ORCID,Bassi Maria Chiara2ORCID,Verzellesi Laura1ORCID,Bertolini Marco1ORCID

Affiliation:

1. Medical Physics, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy

2. Medical Library, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy

Abstract

Background: Lately, radiomic studies featuring the development of a signature to use in prediction models in diagnosis or prognosis outcomes have been increasingly published. While the results are shown to be promising, these studies still have many pitfalls and limitations. One of the main issues of these studies is that radiomic features depend on how the images are preprocessed before their computation. Since, in widely known and used software for radiomic features calculation, it is possible to set these preprocessing parameters before the calculation of the radiomic feature, there are ongoing studies assessing the stability and repeatability of radiomic features to find the most suitable preprocessing parameters for every used imaging modality. Materials and Methods: We performed a comprehensive literature search using four electronic databases: PubMed, Cochrane Library, Embase, and Scopus. Mesh terms and free text were modeled in search strategies for databases. The inclusion criteria were studies where preprocessing parameters’ influence on feature values and model predictions was addressed. Records lacking information on image acquisition parameters were excluded, and any eligible studies with full-text versions were included in the review process, while conference proceedings and monographs were disregarded. We used the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2) tool to investigate the risk of bias. We synthesized our data in a table divided by the imaging modalities subgroups. Results: After applying the inclusion and exclusion criteria, we selected 43 works. This review examines the impact of preprocessing parameters on the reproducibility and reliability of radiomic features extracted from multimodality imaging (CT, MRI, CBCT, and PET/CT). Standardized preprocessing is crucial for consistent radiomic feature extraction. Key preprocessing steps include voxel resampling, normalization, and discretization, which influence feature robustness and reproducibility. In total, 44% of the included works studied the effects of an isotropic voxel resampling, and most studies opted to employ a discretization strategy. From 2021, several studies started selecting the best set of preprocessing parameters based on models’ best performance. As for comparison metrics, ICC was the most used in MRI studies in 58% of the screened works. Conclusions: From our work, we highlighted the need to harmonize the use of preprocessing parameters and their values, especially in light of future studies of prospective studies, which are still lacking in the current literature.

Funder

Italian Ministry of Health—Ricerca Corrente Annual Program 2025

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3