Abstract
Abstract
Purpose
Attenuation correction is a critically important step in data correction in positron emission tomography (PET) image formation. The current standard method involves conversion of Hounsfield units from a computed tomography (CT) image to construct attenuation maps (µ-maps) at 511 keV. In this work, the increased sensitivity of long axial field-of-view (LAFOV) PET scanners was exploited to develop and evaluate a deep learning (DL) and joint reconstruction-based method to generate µ-maps utilizing background radiation from lutetium-based (LSO) scintillators.
Methods
Data from 18 subjects were used to train convolutional neural networks to enhance initial µ-maps generated using joint activity and attenuation reconstruction algorithm (MLACF) with transmission data from LSO background radiation acquired before and after the administration of 18F-fluorodeoxyglucose (18F-FDG) (µ-mapMLACF-PRE and µ-mapMLACF-POST respectively). The deep learning-enhanced µ-maps (µ-mapDL-MLACF-PRE and µ-mapDL-MLACF-POST) were compared against MLACF-derived and CT-based maps (µ-mapCT). The performance of the method was also evaluated by assessing PET images reconstructed using each µ-map and computing volume-of-interest based standard uptake value measurements and percentage relative mean error (rME) and relative mean absolute error (rMAE) relative to CT-based method.
Results
No statistically significant difference was observed in rME values for µ-mapDL-MLACF-PRE and µ-mapDL-MLACF-POST both in fat-based and water-based soft tissue as well as bones, suggesting that presence of the radiopharmaceutical activity in the body had negligible effects on the resulting µ-maps. The rMAE values µ-mapDL-MLACF-POST were reduced by a factor of 3.3 in average compared to the rMAE of µ-mapMLACF-POST. Similarly, the average rMAE values of PET images reconstructed using µ-mapDL-MLACF-POST (PETDL-MLACF-POST) were 2.6 times smaller than the average rMAE values of PET images reconstructed using µ-mapMLACF-POST. The mean absolute errors in SUV values of PETDL-MLACF-POST compared to PETCT were less than 5% in healthy organs, less than 7% in brain grey matter and 4.3% for all tumours combined.
Conclusion
We describe a deep learning-based method to accurately generate µ-maps from PET emission data and LSO background radiation, enabling CT-free attenuation and scatter correction in LAFOV PET scanners.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,General Medicine,Radiology, Nuclear Medicine and imaging,General Medicine
Reference56 articles.
1. Bailey DL. Transmission scanning in emission tomography. Eur J Nucl Med. 1998;25:774–87.
2. Nakamoto Y, Osman M, Cohade C, Marshall LT, Links JM, Kohlmyer S, et al. PET/CT: Comparison of quantitative tracer uptake between germanium and CT transmission attenuation-corrected images. J Nucl Med. 2002;43:1137–43.
3. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41:1369–79.
4. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys. 1998;25:2046–63.
5. Burger C, Goerres G, Schoenes S, Buck A, Lonn A, Von Schulthess G. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging. 2002;29:922–7.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献