Extracting value from total-body PET/CT image data - the emerging role of artificial intelligence

Author:

Shiyam Sundar Lalith KumarORCID,Gutschmayer Sebastian,Maenle Marcel,Beyer Thomas

Abstract

AbstractThe evolution of Positron Emission Tomography (PET), culminating in the Total-Body PET (TB-PET) system, represents a paradigm shift in medical imaging. This paper explores the transformative role of Artificial Intelligence (AI) in enhancing clinical and research applications of TB-PET imaging. Clinically, TB-PET’s superior sensitivity facilitates rapid imaging, low-dose imaging protocols, improved diagnostic capabilities and higher patient comfort. In research, TB-PET shows promise in studying systemic interactions and enhancing our understanding of human physiology and pathophysiology. In parallel, AI’s integration into PET imaging workflows—spanning from image acquisition to data analysis—marks a significant development in nuclear medicine. This review delves into the current and potential roles of AI in augmenting TB-PET/CT’s functionality and utility. We explore how AI can streamline current PET imaging processes and pioneer new applications, thereby maximising the technology’s capabilities. The discussion also addresses necessary steps and considerations for effectively integrating AI into TB-PET/CT research and clinical practice. The paper highlights AI’s role in enhancing TB-PET’s efficiency and addresses the challenges posed by TB-PET’s increased complexity. In conclusion, this exploration emphasises the need for a collaborative approach in the field of medical imaging. We advocate for shared resources and open-source initiatives as crucial steps towards harnessing the full potential of the AI/TB-PET synergy. This collaborative effort is essential for revolutionising medical imaging, ultimately leading to significant advancements in patient care and medical research.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3