Super-resolution reconstruction of single image for latent features

Author:

Wang Xin,Yan Jing-Ke,Cai Jing-Ye,Deng Jian-Hua,Qin Qin,Cheng Yao

Abstract

AbstractSingle-image super-resolution (SISR) typically focuses on restoring various degraded low-resolution (LR) images to a single high-resolution (HR) image. However, during SISR tasks, it is often challenging for models to simultaneously maintain high quality and rapid sampling while preserving diversity in details and texture features. This challenge can lead to issues such as model collapse, lack of rich details and texture features in the reconstructed HR images, and excessive time consumption for model sampling. To address these problems, this paper proposes a Latent Feature-oriented Diffusion Probability Model (LDDPM). First, we designed a conditional encoder capable of effectively encoding LR images, reducing the solution space for model image reconstruction and thereby improving the quality of the reconstructed images. We then employed a normalized flow and multimodal adversarial training, learning from complex multimodal distributions, to model the denoising distribution. Doing so boosts the generative modeling capabilities within a minimal number of sampling steps. Experimental comparisons of our proposed model with existing SISR methods on mainstream datasets demonstrate that our model reconstructs more realistic HR images and achieves better performance on multiple evaluation metrics, providing a fresh perspective for tackling SISR tasks.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3