Single image super-resolution with denoising diffusion GANS

Author:

Xiao Heng,Wang Xin,Wang Jun,Cai Jing-Ye,Deng Jian-Hua,Yan Jing-Ke,Tang Yi-Dong

Abstract

AbstractSingle image super-resolution (SISR) refers to the reconstruction from the corresponding low-resolution (LR) image input to a high-resolution (HR) image. However, since a single low-resolution image corresponds to multiple high-resolution images, this is an ill-posed problem. In recent years, generative model-based SISR methods have outperformed conventional SISR methods in performance. However, the SISR methods based on GAN, VAE, and Flow have the problems of unstable training, low sampling quality, and expensive computational cost. These models also struggle to achieve the trifecta of diverse, high-quality, and fast sampling. In particular, denoising diffusion probabilistic models have shown impressive variety and high quality of samples, but their expensive sampling cost prevents them from being well applied in the real world. In this paper, we investigate the fundamental reason for the slow sampling speed of the SISR method based on the diffusion model lies in the Gaussian assumption used in the previous diffusion model, which is only applicable for small step sizes. We propose a new Single Image Super-Resolution with Denoising Diffusion GANS (SRDDGAN) to achieve large-step denoising, sample diversity, and training stability. Our approach combines denoising diffusion models with GANs to generate images conditionally, using a multimodal conditional GAN to model each denoising step. SRDDGAN outperforms existing diffusion model-based methods regarding PSNR and perceptual quality metrics, while the added latent variable Z solution explores the diversity of likely HR spatial domain. Notably, the SRDDGAN model infers nearly 11 times faster than diffusion-based SR3, making it a more practical solution for real-world applications.

Funder

Science and Technology Major Project of Guangxi

Beihai city science and technology planning project

Guangxi graduate student innovation project

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3