Towards uniform point distribution in feature-preserving point cloud filtering

Author:

Chen Shuaijun,Wang Jinxi,Pan Wei,Gao Shang,Wang Meili,Lu Xuequan

Abstract

AbstractWhile a popular representation of 3D data, point clouds may contain noise and need filtering before use. Existing point cloud filtering methods either cannot preserve sharp features or result in uneven point distributions in the filtered output. To address this problem, this paper introduces a point cloud filtering method that considers both point distribution and feature preservation during filtering. The key idea is to incorporate a repulsion term with a data term in energy minimization. The repulsion term is responsible for the point distribution, while the data term aims to approximate the noisy surfaces while preserving geometric features. This method is capable of handling models with fine-scale features and sharp features. Extensive experiments show that our method quickly yields good results with relatively uniform point distribution.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The application of artificial intelligence in Unmanned Underwater Vehicle communication systems;Computers and Electrical Engineering;2024-07

2. Denoising point clouds with fewer learnable parameters;Computer-Aided Design;2024-07

3. Noise4Denoise: Leveraging noise for unsupervised point cloud denoising;Computational Visual Media;2024-06-14

4. PathNet: Path-Selective Point Cloud Denoising;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-06

5. Microsaccade-inspired event camera for robotics;Science Robotics;2024-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3