Author:
Liu Weipeng,Shan Shengqi,Chen Haiyong,Wang Rui,Sun Jiaming,Zhou Zhengkui
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hebei Province
Central government guides local technology development
Publisher
Springer Science and Business Media LLC
Subject
Metals and Alloys,Mechanical Engineering,Mechanics of Materials
Reference35 articles.
1. Hou W, Zhang D, Wei Y et al (2020) Review on computer aided weld defect detection from radiography images[J]. Appl Sci 10(5):1878. https://doi.org/10.3390/app10051878
2. Fan Ding, Hu Ande, Huang Jiankang, Xu Zhenya, Xu Xu (2020) Defect recognition method of X-ray image of pipe weld based on improved convolution neural network[J]. Trans China Weld Inst 41(01):7-11+97 CNKI:SUN:HJXB.0.2020-01-002
3. Mery D, Arteta C (2017) Automatic defect recognition in x-ray testing using computer vision. In: 2017 IEEE winter conference on applications of computer vision (WACV). IEEE, pp. 1026–1035. https://doi.org/10.1109/WACV.2017.119
4. Cheng Y, Chen S, Xiao J et al (2021) Dynamic estimation of joint penetration by deep learning from weld pool image[J]. Sci Technol Weld Join 26(4):279–285. https://doi.org/10.1080/13621718.2021.1896141
5. Li C, Wang Q, Jiao W, et al. (2020) Deep learning-based detection of penetration from weld pool reflection images[J]. Weld J 99(9):239S–245S https://doi.org/10.29391/2020.99.022
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献