Deep Learning-Based Detection of Penetration from Weld Pool Reflection Images

Author:

LI CHAO, ,WANG QIYUE,JIAO WENHUA,JOHNSON MICHAEL,ZHANG YU MING

Abstract

An innovative method was proposed to determine weld joint penetration using machine learning techniques. In our approach, the dot-structured laser images reflected from an oscillating weld pool surface were captured. Experienced welders typically evaluate the weld penetration status based on this reflected laser pattern. To overcome the challenges in identifying features and accurately processing the images using conventional machine vision algorithms, we proposed the use the raw images without any processing as the input to a convolutional neural network (CNN). The labels needed to train the CNN were the measured weld penetration states, obtained from the images on the backside of the workpiece as a set of discrete weld penetration categories. The raw data, images, and penetration state were generated from extensive experiments using an automated robotic gas tungsten arc welding process. Data augmentation was performed to enhance the robustness of the trained network, which led to 270,000 training examples, 45,000 validation examples, and 45,000 test examples. A six-layer convolutional neural net-work trained with a modified mini-batch gradient descent method led to a final testing accuracy of 90.7%. A voting mechanism based on three continuous images increased the classification accuracy to 97.6%.

Publisher

American Welding Society

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of weld penetration prediction based on weld pool image and deep learning approach in gas tungsten arc welding;The International Journal of Advanced Manufacturing Technology;2023-12-19

2. CNN-Based Task State Estimation for Safer Automation of Oxy-Fuel Metal Cutting;2023 IEEE 19th International Conference on Automation Science and Engineering (CASE);2023-08-26

3. Optimization of weld penetration prediction based on weld pool image and deep learning approach in gas tungsten arc welding;2023-08-18

4. Modified Fusing-and-Filling Generative Adversarial Network–based few-shot image generation for GMAW defect detection using multi-sensor monitoring system;The International Journal of Advanced Manufacturing Technology;2023-08-11

5. Weld Image Evaluation Model Using Improved Loss Function;2023 IEEE 16th International Conference on Electronic Measurement & Instruments (ICEMI);2023-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3