Deploying Machine Learning for Radiography of Aerospace Welds

Author:

Tyystjärvi Topias,Fridolf Peter,Rosell Anders,Virkkunen Iikka

Abstract

AbstractArtificial intelligence is providing new possibilities for analysis in the field of industrial radiography. As capabilities evolve, there is the need for knowledge concerning how to deploy these technologies in practice and benefit from the new automatically generated information. In this study, automatic defect recognition based on machine learning was deployed as an aid in industrial radiography of laser welds in an aerospace component, and utilized to produce statistics for improved quality control. A multi-model approach with an added weld segmentation step improved the inference speed and decreased false calls to improve field use. A user interface with visualization options was developed to display the evaluation results. A dataset of 451 radiographs was automatically analysed, yielding 10037 indications with size and location information, providing capability for statistical analysis beyond what is practical to carry out with manual annotation. The distribution of indications was modeled as a product of the probability of detection and an exponentially decreasing underlying flaw distribution, opening the possibility for model reliability assessment and predictive capabilities on weld defects. An analysis of the indications demonstrated the capability to automatically detect both large-scale trends and individual components and welds that were more at risk of failing the inspection. This serves as a step towards smarter utilization of non-destructive evaluation data in manufacturing.

Funder

Aalto University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CFM56 turbine trench-filler inspection using instance segmentation;International Journal of System Assurance Engineering and Management;2024-07-22

2. A New Method for Detecting Weld Stability Based on Color Digital Holography;Applied Sciences;2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3