Analytical determination of antioxidant capacity of hop-derived compounds in beer using specific rapid assays (ORAC, FRAP) and ESR-spectroscopy

Author:

Rothe JuliaORCID,Fischer Riana,Cotterchio Christina,Gastl Martina,Becker Thomas

Abstract

AbstractThere is a relationship between antioxidant activity and ageing stability of beer. The high-throughput antioxidant capacity assays ORAC and FRAP, which rely on specific reaction mechanisms, are validated as an addition to the established ESR-ST method with a focus on hop-derived antioxidants. Beers were brewed with systematic variations in hop variety, hop product, and the hopping regime (late hopping) to achieve sample beers varying widely in the concentrations of hop-derived antioxidants (α- and iso-α-acids, phenolic compounds). A significant positive correlation between phenolic compounds and the ORAC- and FRAP-values (p < 0.01) was found. The effect of individual resinous substances and free phenolic acids and flavonoids on the antioxidant capacity of beer (ORAC, FRAP, and ESR-ST) was proven in spiking trials. We found a correlation between the occurrence of the o-di-OH-group and the ORAC- and FRAP-values of phenolic compounds. Phenolic compounds did not react as anti- or prooxidants in the radical generation (ESR-ST). Higher concentrations of unisomerized α-acids significantly reduced ESR-signal intensity but had no significant effect on ORAC- or FRAP-values. Beers brewed with late hop addition, which yielded higher concentrations of unisomerized α-acids and phenolic compounds, had higher ORAC, FRAP-values and a reduced ESR-signal intensity. These three methods rely on different reaction principles, and therefore, different groups of hop-derived compounds act as antioxidants in these assays. A combination of the two high-throughput methods (ORAC, FRAP) and ESR-ST is advantageous for the evaluation of the antioxidant capacity of beers varying in hop-derived compounds.

Funder

Allianz Industrie Forschung

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Biochemistry,General Chemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3