Improving the quality of gluten-free plant-based meat analogs based on soy protein isolate with insoluble soy fibers and low acyl gellan gum

Author:

Taghian Dinani SomayehORCID,de Jong Stijn,Vardhanabhuti Bongkosh,van der Goot Atze Jan

Abstract

AbstractThis study describes the effects of incorporating insoluble soy fiber and low acyl gellan gum as an alternative for wheat gluten in plant-based meat analogs made from soy protein isolate (SPI). The formulations containing insoluble soy fiber (ranging from 0 to 3%) and low acyl gellan gum (0–2%) were processed in a high-temperature shear cell (HTSC) and then analyzed in terms of macrostructure, microstructure, rheological properties, tensile strength, and water absorption capacity (WAC). Macrostructural analysis revealed that the control product containing SPI without insoluble soy fiber and low acyl gellan gum exhibited a dense and gel-like structure, devoid of visible fibers. The addition of 1, 2, and 3 wt.% of insoluble soy fiber increased the formation of visually elongated fibers in both macro- and microscopic levels in the shear direction, resulting in anisotropic plant-based meat analogs with improved tensile strength and elasticity. The use of 1 and 2 wt.% low acyl gellan gum led to the formation of short and thin filaments that were less oriented in the shear direction, resulting in decreased tensile strength. When combined with low acyl gellan gum, insoluble soy fiber failed to produce lengthy and elongated fibers, resulting in short and thin fibrils. These findings suggest that the interaction between insoluble soy fiber and low acyl gellan gum under the processing conditions may hinder fiber formation and mechanical anisotropy. Microscopic examination reveals smoother regions in products enriched with insoluble soy fiber and rougher surfaces in those containing low acyl gellan gum. Moreover, X-ray microtomography confirms that insoluble soy fiber enhanced air retention, contributing to enhanced structural integrity. In contrast, low acyl gellan gum introduces irregularly shaped air bubbles, compromising structural improvement. In summary, this study underscores the potential of insoluble soy fiber to enhance the structural and the textural properties of plant-based meat analogs. However, it also highlights the challenges posed by low acyl gellan gum, which, despite improving water retention, may hinder fiber formation and mechanical anisotropy. These findings offer insights for advancing the quality of plant-based meat products.

Funder

PlantPromise

United Soybean Board

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Biochemistry,General Chemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3