Screening of Optimal Konjac Glucomannan–Protein Composite Gel Formulations to Mimic the Texture and Appearance of Tripe

Author:

Zou Qiang12,Liu Yudie12,Luo Linghui12,Chen Yuyou12,Zheng Yuhan12,Ran Guilian12,Liu Dayu12

Affiliation:

1. School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China

2. Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China

Abstract

This study aimed to develop a product that closely replicates the texture and appearance of tripe. The effect of three different proteins (soy protein isolate (SPI), pea protein isolate (PPI), and whey protein isolate (WPI)) at different protein levels and processing conditions (heating (90 °C, 1 h) followed by cooling (4 °C, 12 h) and heating (90 °C, 1h) followed by freezing (−18 °C, 12 h)) of konjac glucomannan (KGM) was analyzed. The optimal formulations for simulating tripe were screened by examining their similarity to real tripe in terms of texture, color, and sensory experience. The screened formulations were also subjected to a preliminary mechanistic investigation. The results show that all three proteins improved the gel’s textural properties to varying degrees. At the same concentration, the hardness and chewiness of the KGM/WPI composite gel were significantly higher than those of the other two KGM/protein composite gels, among which the composite gel obtained by adding 8% WPI and 5% KGM heating-frozen (FWK4) had the greatest hardness and chewiness of 4338.07 g and 2313.76, respectively, and the springiness differences in all of the composite gels were small. In addition, the addition of protein increased the whiteness of the hybrid gels, with WPI having the most significant effect on the whiteness of the composite gels (whiteness increased from 30.25 to 62.80 as the concentration of WPI increased from 0 to 10%). Freezing increased composite gel hardness and chewiness, but reduced gel springiness and whiteness. Cluster analysis showed that the composite gel obtained by heating–cooling 8% WPI and 5% KGM (WK4) was very similar to the real tripe in terms of chewiness and whiteness, and WK4 had the highest sensory scores for color, tissue morphology, tactile sensation, taste, and odor. The acceptability score in terms of tissue morphology reached 4.3. Meanwhile, the characterization results of WK4 indicate the presence of large junction areas in the gel network. Fourier transform infrared spectroscopy (FTIR) analysis, X-ray diffraction, and intermolecular force contributions indicated that the incorporation of WPI promoted integral interactions, and that hydrophobic interactions and disulfide bonding played a key role in the WK4 composite gel system. Moreover, scanning electron microscopy (SEM) also showed that the combination of WPI and konjac glucan resulted in a more compact gel structure. This study is informative for the development of the field of bionic tripe processing.

Funder

Sichuan Provincial Science and Technology Achievement Transfer

Sichuan Provincial Key Research and Development Project

Publisher

MDPI AG

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3