Differentiation of peach cultivars by image analysis based on the skin, flesh, stone and seed textures

Author:

Ropelewska EwaORCID,Rutkowski Krzysztof P.ORCID

Abstract

AbstractThe peaches belonging to different cultivars can be characterized by differentiation in properties. The aim of this study was to evaluate the usefulness of individual parts of fruit (skin, flesh, stone and seed) for cultivar discrimination of peaches based on textures determined using image analysis. Discriminant analysis was performed using the classifiers of Bayes net, logistic, SMO, multi-class classifier and random forest based on a set of combined textures selected from all color channels R, G, B, L, a, b, X, Y, Z and for textures selected separately for RGB, Lab and XYZ color spaces. In the case of sets of textures selected from all color channels (R, G, B, L, a, b, X, Y, Z), the accuracy of 100% was observed for flesh, stones and seeds for selected classifiers. The sets of textures selected from RGB color space produced the correctness equal to 100% in the case of flesh and seeds of peaches. In the case of Lab and XYZ color spaces, slightly lower accuracies than for RGB color space were obtained and the accuracy reaching 100% was noted only for the discrimination of seeds of peaches. The research proved the usefulness of selected texture parameters of fruit flesh, stones and seeds for successful discrimination of peach cultivars with an accuracy of 100%. The distinguishing between cultivars may be important for breeders, consumers and the peach industry for ensuring adequate processing conditions and equipment parameters. The cultivar identification of fruit by human may be characterized by large errors. The molecular or chemical methods may require special equipment or be time-consuming. The image analysis may ensure objective, rapid and relatively inexpensive procedure and high accuracy for peach cultivar discrimination.

Funder

The National Institute of Horticultural Research

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Biochemistry,General Chemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3