The Classification of Peaches at Different Ripening Stages Using Machine Learning Models Based on Texture Parameters of Flesh Images

Author:

Ropelewska Ewa1ORCID,Rutkowski Krzysztof P.1ORCID

Affiliation:

1. Fruit and Vegetable Storage and Processing Department, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland

Abstract

The ripening stage can affect consumer preference and the market value of peaches. This study was aimed at developing an objective, effective, and fast procedure for distinguishing the different stages of ripeness of peaches using image texture parameters and models built using traditional machine learning algorithms. The ripeness classes (distinguished using DA-Meter-based nondestructive VIS/NIR method) 0.1, 0.4, and 0.9 for ‘Redhaven’ peaches and 0.1, 0.4, and 1.0 for ‘Royal Glory’ peaches were considered. Fruit weight, ethylene production, total soluble solids content (SSC), titratable acidity (TA), and fruit firmness (FF) were measured. The slice images for each class were acquired. Selected texture parameters from images in color channels R, G, B, L, a, b, X, Y, and Z were used to develop classification models for distinguishing peach ripening stages in pairs. Models were built for combined textures selected from images in all color channels, individual color spaces, and individual color channels using various machine learning algorithms. The ethylene production and SSC was higher in peaches with a ripeness class of 0.1 than in less ripe fruit. The least ripe fruit of ‘Redhaven’ and ‘Royal Glory’ peaches were characterized by the highest fruit firmness. Furthermore, statistically significant differences in SSC between classes 0.1 and 0.9 of ‘Redhaven’ were observed. For ‘Royal Glory’, statistically significant differences in TA were determined between all classes. These differences may be related to classification performance metrics. In the case of ‘Redhaven’ peaches, two extreme ripeness classes 0.1 (the greatest ripeness) and 0.9 (the least ripeness) were correctly classified with the highest accuracy reaching 100% for models built based on textures selected from all color channels (random forest and Bayes net algorithms) and color space lab (random forest). For individual color channels, the accuracy reached 99% for color channel G (random forest) and color channel a (logistic). The accuracy of classifying ripening stages 0.1 and 0.4 reached 98% for the model built using textures from all color channels and color space lab (Bayes net). The ripening stages 0.4 and 0.9 were distinguished with an accuracy of up to 96% (all color channels, random forest). The classification of ripening stages of ‘Royal Glory’ peaches reached 100% for all pairs, 0.1 vs. 1.0 (all color channels, color spaces RGB, color space lab, color channel G, color channel a), 0.1 vs. 0.4 (all color channels, color space RGB, color space lab), and 0.4 vs. 1.0 (all color channels). The developed procedure can be useful in practice. Distinguishing peaches at different stages of ripeness and the selection of fruit at the optimal stage can be important for consumption and processing.

Funder

Polish Ministry of Agriculture and Rural Development

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3