How Do Secondary-School Teachers Design STEM Teaching–Learning Sequences? A Mixed Methods Study for Identifying Design Profiles

Author:

Grimalt-Álvaro CarmeORCID,López-Simó VíctorORCID,Tena ÈliaORCID

Abstract

AbstractDue to the increasing presence of the Science, Technology, Engineering, and Mathematics (STEM) education paradigm in Spain, many teachers have embarked on the design of specific Teaching–Learning Sequences (TLS) to be implemented in schools. Understanding the views and perceptions about STEM that take shape in specific teachers’ designs should enrich the way in which STEM education is designed based on a more focused approach. This study aims to characterise how secondary school teachers from Catalonia (Spain) design STEM TLS, to identify specific design profiles that can be related to different understandings of STEM education based on a mixed-method analytical approach. We collected 345 canvases from teachers participating in a national STEM education training programme, outlining STEM TLS. The canvases were analysed with an assessment rubric consisting of 8 instructional components (Interdisciplinarity, STEM practices, Information and Communications Technology tools, Formalisation, Openness, Alignment, Authenticity and Values). We identified patterns in teachers’ designs while implementing a hierarchical cluster analysis of the results, obtaining 6 different clusters of 39, 36, 66, 49, 90, and 65 TLS, respectively. The diverse components prioritised or balanced in each cluster suggest how STEM education can be conceived of differently by participating teachers through the lens of component analysis. While authenticity appears to be a major force in the clustering process, direct relationships between components can be found (i.e., between Formalisation and Alignment), as well as inverse relationships (i.e., between Openness and Practices). These findings provide important clues to understand STEM TLS design and recognise the rubric and the cluster definition as powerful tools for teacher training and evaluation in STEM education.

Funder

Universitat Autònoma de Barcelona

Publisher

Springer Science and Business Media LLC

Reference58 articles.

1. Akerson, V. L., Burgess, A., Gerber, A., Guo, M., Khan, T. A., & Newman, S. (2018). Disentangling the meaning of STEM: Implications for science education and science teacher education. Journal of Science Teacher Education, 29(1), 1–8. https://doi.org/10.1080/1046560X.2018.1435063

2. Akuma, F. V., & Callaghan, R. (2019). A systematic review characterizing and clarifying intrinsic teaching challenges linked to inquiry-based practical work. Journal of Research in Science Teaching, 56(5), 619–648. https://doi.org/10.1002/tea.21516

3. Ananiadou, K., & Claro, M. (2008). 21st Century skills and competencies for new millenium learners in OECD. In Edu/Wkp (2009)20 (Issue 41, pp. 1–33).

4. Anggraeni, R. E. & Suratno. (2021). The analysis of the development of the 5E-STEAM learning model to improve critical thinking skills in natural science lesson. Journal of Physics: Conference Series, 1832(1). https://doi.org/10.1088/1742-6596/1832/1/012050

5. Bozzo, G., Grimalt-Álvaro, C., & López-Simó, V. (2015). The uses of Interactive Whiteboard in a science laboratory. In C. Fazio & R. M. Sperandeo Mineo (Eds.), GIREP-MPTL 2014 Proceedings (pp. 555–562). MPTL. https://ddd.uab.cat/pub/caplli/2015/149299/Bozzo_Grimalt-Alvaro_Lopez_-_2015_-_The_uses_of_Interactive_Whiteboard_in_a_science_laboratory_2_5_.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3