BDS-3 differential code bias estimation with undifferenced uncombined model based on triple-frequency observation

Author:

Gu Shengfeng,Wang YinTong,Zhao Qile,Zheng Fu,Gong Xiaopeng

Abstract

AbstractSince 2015, the new generation global BDS system, i.e., BDS-3, has started its development with five experimental satellites demonstration system and has announced its initial global service officially on December 27, 2018. Among the various characteristics to be analyzed for the new generation BDS satellites, the differential code bias (DCB) is of special attention since that it has a direct dependence on the new signals, i.e., B1C and B2a, and it is one of the most intricacy problems in the ionosphere sensing and positioning with multi-GNSS and multi-frequency observations. To take the full capability of the triple-frequency BDS signals, this paper proposed a new method for the DCB estimation in which the undifferenced uncombined observations are processed in PPP mode. In addition, with the intention to estimate all the unknowns, including the DCB, in a single filter, the DESIGN (deterministic plus stochastic ionosphere model for GNSS) method is applied for the ionospheric delay constrains in this method. In the formula derivation, special attention is given to the DCB and clock parameters due to different frequencies for B1I/B1C, etc. Then, the efficiency of the new method is assessed with observations of 23 iGMAS stations capable for BDS triple-frequency tracking and 21 IGS stations capable for GPS triple-frequency tracking during DOY 001 to 090, 2019. Moreover, the traditional DCB estimation method by employing the geometry-free (GF) combination with the ionospheric delay removed by global ionosphere map product is also performed for comparison purpose. The experimental results suggest that by using the undifferenced uncombined solution, rather than the GF combination, the BDS-2 DCB on B1IB2I and B1CB3I can be improved, especially for the MEO satellites. Regarding to the DLR products, the undifferenced uncombined DCB solution presents a RMS of 0.32 ns and 0.27 ns for B1IB2I and B1CB3I, respectively. Concerning the BDS-3 satellites DCB, it is GF combination that performs better by a factor of $$12.7\%$$12.7% and $$15.2\%$$15.2% for B1CB2a and B1CB3I, respectively. This is mainly due to the fact that the undifferenced uncombined DCB solution is sensitive to the limited precision of the BDS-3 orbit and clock. This conclusion is further confirmed by the improvement in the GPS DCB solution with the new method. Compared with the GF combination solution, the STD for daily repeatability improves from 0.088 to 0.061 ns and 0.119 to 0.090 ns for satellite on C1WC2W and C1WC5X, respectively, by using the undifferenced uncombined model.

Funder

National Key Research and Development Pla

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3