Estimating BDS-3 Satellite Differential Code Biases with the Single-Frequency Uncombined PPP Model

Author:

Wu Jizhong1,Gao Shan1,Li Dongchen1

Affiliation:

1. School of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211800, China

Abstract

Differential Code Bias (DCB) is a crucially systematic error in satellite positioning and ionospheric modeling. This study aims to estimate the BeiDou-3 global navigation satellite system (BDS-3) satellite DCBs by using the single-frequency (SF) uncombined Precise Point Positioning (PPP) model. The experiment utilized BDS-3 B1 observations collected from 25 International GNSS Service (IGS) stations located at various latitudes during March 2023. The results reveal that the accuracy of estimating B1I-B3I DCBs derived from single receiver exhibits latitude dependence. Stations in low-latitude regions show considerable variability in the root mean square (RMS) of absolute offsets for satellite DCBs estimation, covering a wide range of values. In contrast, mid- to high-latitude stations demonstrate a more consistent pattern with relatively stable RMS values. Moreover, it has been observed that the stations situated in the Northern Hemisphere display a higher level of consistency in the RMS values when compared to those in the Southern Hemisphere. When incorporating estimates from all 25 stations, the RMS of the absolute offsets in satellite DCBs estimation consistently remained below 0.8 ns. Notably, after excluding 8 low-latitude stations and utilizing data from the remaining 17 stations, the RMS of absolute offsets in satellite DCBs estimation decreased to below 0.63 ns. These enhancements underscore the importance of incorporating a sufficient number of mid- and high-latitude stations to mitigate the effects of ionospheric variability when utilizing SF observations for satellite DCBs estimation.

Funder

ational Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3