Abstract
Abstract
Purpose
To determine the association between red meat (RM), processed red meat (PRM) and total red and processed red meat (TRPRM) consumption on nutritional adequacy and markers of health and cardio-metabolic diseases in British adults.
Methods
In this cross-sectional study of adults (19–64 y) from the National Diet and Nutrition Survey (NDNS) (n = 1758), RM and PRM consumption were assessed from 4 day estimated food diaries. Anthropometric measures, blood pressure (BP), pulse pressure (PP), plasma glucose, HbA1c, C-reactive protein, TAG, TC, LDL-C and HDL-C from the NDNS were used.
Results
43% of adults (men 57% and women 31%) consumed more than the 70 g/d TRPRM guidelines. Fewer adults in the highest tertile of TRPRM intake were below lower reference nutrient intakes (LRNIs), particularly for zinc and iron, respectively. In model 3 (controlled for age, energy intake, socioeconomic classification, number of daily cigarettes, BMI, dietary factors), higher RM consumption was associated with being significantly taller (model 3: P-ANCOVA = 0.006; P-T3/T1 = 0.0004) in men and lower diastolic BP (model 3: P-ANCOVA = 0.004; P-T3/T2 = 0.002) in women. Higher PRM in men was associated with significantly higher plasma ferritin concentration (model 3: P-ANCOVA = 0.0001; P-T2/T1 = 0.0001), being taller (P-ANCOVA = 0.019; P-T1/T2 = 0.047, T1/T3 = 0.044), increased body weight (model 3: P-ANCOVA = 0.001; P-T1/T3 = 0.0001), BMI (model 3: P-ANCOVA = 0.007; P-T1/T3 = 0.006) and smaller hip circumference (model 3: P-ANCOVA = 0.006; P-T3/T1 = 0.024; P-T2/T1 = 0.013) and in women significantly higher TC (model 3: P-ANCOVA = 0.020; P-T3/T2 = 0.016), LDL-C (P-ANCOVA = 0.030; P-T3/T2 = 0.025), HbA1c (model 3: P-ANCOVA = 0.0001; P-T2/T1 = 0.001; P-T3/T2 = 0.001) and higher PP (model 3: P-ANCOVA = 0.022; P-T3/T1 = 0.021).
Higher PRM consumption was associated with significantly higher BMI and hip circumference in men, and higher TC, LDL-C, HbA1c and PP in women, which was not observed for RM consumption.
Publisher
Springer Science and Business Media LLC
Subject
Nutrition and Dietetics,Medicine (miscellaneous)
Reference40 articles.
1. The scientific advisory committee on nutrition. iron and health; TSO: London, UK, 2010. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/339309/SACN_Iron_and_Health_Report.pdf. Accessed 23 Jan 2018.
2. World cancer research fund/American institute for cancer research. Diet, nutrition, physical activity and cancer: a global perspective. Continuous update project expert report 2018. Available at https://www.wcrf.org/sites/default/files/Colorectal-cancer-report.pdf. Accessed 23 Jan 2019.
3. Bouvard V, Loomis D, Guyton KZ, Grosse Y, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Mattock H and Straif K, on behalf of the International Agency for Research on Cancer (2015) Carcinogenicity of consumption of red and processed meat. Lancet Oncol 16(16):1599–1600
4. Pan A, Sun Q, Bernstein AM, Manson JE, Willett WC, Hu FB (2013) Changes in red meat consumption and subsequent risk of type 2 diabetes mellitus: three cohorts of US men and women. JAMA Intern Med 173:1328–1335. https://doi.org/10.1001/jamainternmed.2013.6633
5. Micha R, Michas G, Mozaffarian D (2012) Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes—an updated review of the evidence. Curr Atheroscler Rep 14:515–524. https://doi.org/10.1007/s11883-012-0282-8