Comprehensive study of 1-Bit full adder cells: review, performance comparison and scalability analysis

Author:

Hasan MehediORCID,Siddique Abdul Hasib,Mondol Abdal Hoque,Hossain Mainul,Zaman Hasan U.,Islam Sharnali

Abstract

AbstractFull Adder (FA) circuits are integral components in the design of Arithmetic Logic Units (ALUs) of modern computing systems. Recently, there have been massive research interests in this area due to the growing need for low-power and high-performance computing systems. Researchers have proposed a variety of FA cells with diverse design techniques, each having its pros and cons. As a result, a systematic method for performance comparison of FA cells using a common simulation platform has become necessary. In this work, we present an extensive study of FA cells. We have compared the performance of thirty-three (33) existing 1-bit FA cells. The drive powers of these FA cells have been compared by applying a variety of load conditions. In addition, the 1-bit FA cells have been extended to 32-bit structures to test their scalability and to investigate their performance in wide-word structures. We have determined that twenty-one (21) of the thirty-three (33) FA cells cannot operate in a 32-bit structure, even though some of them exhibit excellent performance as a 1-bit cell. The main finding of this research is that the single-bit performance parameters of FA cells should not be considered as the main basis for performance comparison. Any FA cell should be analyzed in a multi-bit structure to determine its practical effectiveness.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and analysis of 1-bit hybrid full adder cells for fast computation;International Journal of Electronics;2024-06-03

2. CMOS Implementation of a Piecewise Linear Activation Function Based Neuron Unit for Neural Network Accelerator;2024 2nd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT);2024-03-15

3. Analysis of CMOS Full Adder Circuits for Multiplier Logic Architectures;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

4. Design and implementation of high-performance 20-T hybrid full adder circuit;Analog Integrated Circuits and Signal Processing;2023-12-27

5. Performance Efficient and Fault Tolerant Approximate Adder;Journal of Electronic Testing;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3