Author:
Achilli Gabriele Maria,Logozzo Silvia,Malvezzi Monica,Valigi Maria Cristina
Abstract
AbstractIn this paper a soft gripper is proposed and designed to achieve some of the 17 Sustainable Development Goals (SDG) described by United Nations (UN) and in particular SDG3, SDG8, SDG 9 and SDG 12. In fact, the presented gripper is conceived for application in the waste industry for helping or partially replacing human operations which could lead to risks or hazards for human health. The device can artificially reproduce the action of human hands allowing a more sustainable work, focusing the attention on worker’s health. Also the design characteristics are oriented to sustainability by using eco-friendly materials. Furthermore, the device is an underactuated soft gripper with modular elements and without sensors. There are no electronic components, and the damageable and non-recyclable parts are minimized. After the description of gripper and mechanical analysis, three different configurations (wearable, with extension and mounted on a cobot) are presented where it is possible to notice that the ends of the gripper (the fingers) are far from the most delicate and less recyclable components such as the motor. Thus, thanks to the modularity of the fingers, it is easy to replace damaged fingers: they have a lower environmental impact than electronic components. In this way, the presented project falls in “the circular design for sustainability” in robotics.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献