Fuzzy particle swarm optimization (FPSO) based feature selection and hybrid kernel distance based possibilistic fuzzy local information C-means (HKD-PFLICM) clustering for churn prediction in telecom industry

Author:

Praseeda C. K.,Shivakumar B. L.

Abstract

Abstract Customer churn has been considered as one of the key issues in the operations of the corporate business sector, as it influences the turnover directly. In particular, the telecom industries are seeking to develop new approaches to predict potential customer to churn. So, it needs the appropriate algorithms to overcome the increasing problem of churn. This work proposed a churn prediction model that employs both strategies of classification and clustering, that helps in recognizing the churn consumers and giving the reasons after the churning of subscribers in the industry of telecom. The process of information gain and fuzzy particle swarm optimization (FPSO) has been executed by the method of feature selection, besides the divergence kernel-based support vector machine (DKSVM) classifier is employed in categorizing churn customers in the proposed approach. In this way, the compelling guidelines on retention have generated since the process plays a vital role in customer relationship management (CRM) to suppress the churners. After the classification process, the churn customers are divided into clusters through the process of fragmenting the data of churning customer. The cluster-based retention offers have provided by the clustering algorithm of hybrid kernel distance-based possibilistic fuzzy local information C-means (HKD-PFLICM), whereas the measurement of distance have accomplished through the kernel functions such as the hyperbolic tangent kernel and Gaussian kernel. The results reveal that proposed churn prediction model (FPSO- DKSVM) produced better churn classification results compared to other existing algorithms such as K-means, flexible K-Medoids, fuzzy local information C-means (FLICM), possibilistic  FLICM (PFLICM) and entropy weighting FLICM (EWFLICM). Article highlights Customer churn is a major concern in most of the companies as it influences the turnover directly. The performance of churn prediction has been improved by applying artificial intelligence and machine learning techniques. Churn prediction plays a crucial role in telecom industry, as they are in the position to maintain their precious customers and organize their Customer Relationship Management.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3