The application of deep learning algorithms to classify subsurface drilling lost circulation severity in large oil field datasets

Author:

Mardanirad SajjadORCID,Wood David A.ORCID,Zakeri HassanORCID

Abstract

Abstract In this paper, we present how precise deep learning algorithms can distinguish loss circulation severities in oil drilling operations. Lost circulation is one of the costliest downhole problem encountered during oil and gas well construction. Applying artificial intelligence can help drilling teams to be forewarned of pending lost circulation events and thereby mitigate their consequences. Data-driven methods are traditionally employed for fluid loss complexity quantification but are not able to achieve reliable predictions for field cases with large quantities of data. This paper attempts to investigate the performance of deep learning (DL) approach in classification the types of fluid loss from a very large field dataset. Three DL classification models are evaluated: Convolutional Neural Network (CNN), Gated Recurrent Unit (GRU) and Long-Short Term Memory (LSTM). Five fluid-loss classes are considered: No Loss, Seepage, Partial, Severe, and Complete Loss. 20 wells drilled into the giant Azadegan oil field (Iran) provide 65,376 data records are used to predict the fluid loss classes. The results obtained, based on multiple statistical performance measures, identify the CNN model as achieving superior performance (98% accuracy) compared to the LSTM and GRU models (94% accuracy). Confusion matrices provide further insight to the prediction accuracies achieved. The three DL models evaluated were all able to classify different types of lost circulation events with reasonable prediction accuracy. Future work is required to evaluate the performance of the DL approach proposed with additional large datasets. The proposed method helps drilling teams deal with lost circulation events efficiently. Article Highlights Three deep learning models classify fluid loss severity in an oil field carbonate reservoir. Deep learning algorithms advance machine learning a large resource dataset with 65,376 data records. Convolution neural network outperformed other deep learning methods.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3