Evaluation of Fracturing Effect of Tight Reservoirs Based on Deep Learning

Author:

Feng Ankang1,Ke Yuxin1,Hei Chuang1ORCID

Affiliation:

1. School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou 434023, China

Abstract

The utilization of hydraulic fracturing technology is indispensable for unlocking the potential of tight oil and gas reservoirs. Understanding and accurately evaluating the impact of fracturing is pivotal in maximizing oil and gas production and optimizing wellbore performance. Currently, evaluation methods based on acoustic logging, such as orthogonal dipole anisotropy and radial tomography imaging, are widely used. However, when the fractures generated by hydraulic fracturing form a network-like pattern, orthogonal dipole anisotropy fails to accurately assess the fracturing effects. Radial tomography imaging can address this issue, but it is challenged by high manpower and time costs. This study aims to develop a more efficient and accurate method for evaluating fracturing effects in tight reservoirs using deep learning techniques. Specifically, the method utilizes dipole array acoustic logging curves recorded before and after fracturing. Manual labeling was conducted by integrating logging data interpretation results. An improved WGAN-GP was employed to generate adversarial samples for data augmentation, and fracturing effect evaluation was implemented using SE-ResNet, ResNet, and DenseNet. The experimental results demonstrated that ResNet with residual connections is more suitable for the dataset in this study, achieving higher accuracy in fracturing effect evaluation. The inclusion of the SE module further enhanced model accuracy by adaptively adjusting the weights of feature map channels, with the highest accuracy reaching 99.75%.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Science and Technology Research Program from the Department of Education of Hubei Province

Innovation Foundation of China National Petroleum Corporation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3