Carbonate / siliciclastic lithofacies classification aided by well-log derivative, volatility and sequence boundary attributes combined with machine learning
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Link
https://link.springer.com/content/pdf/10.1007/s12145-022-00829-0.pdf
Reference56 articles.
1. Abbas MA, Al-Mudhafar WJ (2021) Lithofacies classification of carbonate reservoirs using advanced machine learning: a case study from a Southern Iraqi oil field. Offshore Technology Conference, Virtual and Houston, Texas, U.S.A, August 2019. https://doi.org/10.4043/31114-MS
2. Agrawal R, Malik A, Samuel R, Saxena A (2022) Real-Time Prediction of litho-facies from drilling data using an artificial neural network: a comparative field data study with optimizing algorithms. J Energy Res Technol 144:043003. https://doi.org/10.1115/1.4051573
3. Al-Mudhafar WJ (2017) Integrating well log interpretations for lithofacies classification and permeability modeling through advanced machine learning algorithms. J Petrol Explor Prod Technol 7:1023–1033. https://doi.org/10.1007/s13202-017-0360-0
4. Al-Mudhafar WJ, Al Lawe EM, Noshi CI (2019) Clustering analysis for improved characterization of carbonate reservoirs in a Southern Iraqi oil field. Offshore Technology Conference, Houston, Texas, U.S.A. May 2019. https://doi.org/10.4043/29269-MS
5. Al-Mudhafar WJ (2020). Advanced supervised machine learning algorithms for efficient electrofacies classification of a carbonate reservoir in a giant Southern Iraqi oil field. Offshore Technology Conference, Houston, Texas, U.S.A. May 2020. https://doi.org/10.4043/30906-MS
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Lithofacies identification from well-logging curves via integrating prior knowledge into deep learning;GEOPHYSICS;2023-12-11
2. Lithofacies identification from well-logging curves via integrating prior knowledge into deep learning;GEOPHYSICS;2023-12-11
3. An ensemble-based machine learning solution for imbalanced multiclass dataset during lithology log generation;Scientific Reports;2023-12-07
4. Well Log Analysis and Comparison of Supervised Machine Learning Algorithms for Lithofacies Identification in Pab Formation, Lower Indus Basin;Journal of Applied Geophysics;2023-12
5. DRAG: A Novel Method for Automatic Geological Boundary Recognition in Shale Strata Using Multi-Well Log Curves;Processes;2023-10-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3