Advanced Supervised Machine Learning Algorithms for Efficient Electrofacies Classification of a Carbonate Reservoir in a Giant Southern Iraqi Oil Field

Author:

Al-Mudhafar Watheq J1

Affiliation:

1. Basrah Oil Company-Iraq

Abstract

Abstract Understanding the vertical discrete electrofacies distributions in wells is a vital step to preserve the reservoir heterogeneity. Predicting the electrofacies distribution at all wells is commonly conducted manually or with the use of some graphing approaches, but recently different machine learning techniques have been adopted to categorize electrofacies. In this paper, two supervised machine-learning techniques were implemented to model electrofacies given well logging data for a well in order to predict the distributions in all other wells (classification) in a carbonate reservoir in a giant southern Iraqi Oil Field. The available data included open-hole and CPI well logging records in addition to the routine core analysis. The well discrete electrofacies distribution for the entire reservoir thickness has been obtained in our paper [OTC-29269-MS] using the Ward Hierarchical Clustering Analysis. For electrofacies classification, two supervised machine-learning techniques, K-Nearest Neighbors (KNN) and Random Forests (RF), were adopted to model the resulting electrofacies given the CPI well logging data for a well to predict at other wells that have missing data. These two supervised learning techniques were implemented as non-linear and non-parametric classifiers, which are imperative attribute due to the non-linearity of the electrofacies properties and the geological reservoir control. The results of this research illustrated that the reservoir electrofacies can be predicted through the use of the supervised learning techniques when well logging records and core data are available. The two adopted classification algorithms were analyzed and compared based on confusion table, transition probability matrix and total percent correct (TCP) of the identified electrofacies that reveal the accuracy of the classification. RF was observed to be the optimum approach as it led to better electrofacies classification in this carbonate reservoir than the KNN. The application of supervised machine learning techniques enhanced the accuracy and reduced the time spent in electrofacies classification. The two machine learning algorithms were implemented by R software, the most powerful statistical programming language.

Publisher

OTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3