Hierarchical automated machine learning (AutoML) for advanced unconventional reservoir characterization

Author:

Mubarak Yousef,Koeshidayatullah Ardiansyah

Abstract

AbstractRecent advances in machine learning (ML) have transformed the landscape of energy exploration, including hydrocarbon, CO2 storage, and hydrogen. However, building competent ML models for reservoir characterization necessitates specific in-depth knowledge in order to fine-tune the models and achieve the best predictions, limiting the accessibility of machine learning in geosciences. To mitigate this issue, we implemented the recently emerged automated machine learning (AutoML) approach to perform an algorithm search for conducting an unconventional reservoir characterization with a more optimized and accessible workflow than traditional ML approaches. In this study, over 1000 wells from Alberta’s Athabasca Oil Sands were analyzed to predict various key reservoir properties such as lithofacies, porosity, volume of shale, and bitumen mass percentage. Our proposed workflow consists of two stages of AutoML predictions, including (1) the first stage focuses on predicting the volume of shale and porosity by using conventional well log data, and (2) the second stage combines the predicted outputs with well log data to predict the lithofacies and bitumen percentage. The findings show that out of the ten different models tested for predicting the porosity (78% in accuracy), the volume of shale (80.5%), bitumen percentage (67.3%), and lithofacies classification (98%), distributed random forest, and gradient boosting machine emerged as the best models. When compared to the manually fine-tuned conventional machine learning algorithms, the AutoML-based algorithms provide a notable improvement on reservoir property predictions, with higher weighted average f1-scores of up to 15–20% in the classification problem and 5–10% in the adjusted-R2 score for the regression problems in the blind test dataset, and it is achieved only after ~ 400 s of training and testing processes. In addition, from the feature ranking extraction technique, there is a good agreement with domain experts regarding the most significant input parameters in each prediction. Therefore, it is evidence that the AutoML workflow has proven powerful in performing advanced petrophysical analysis and reservoir characterization with minimal time and human intervention, allowing more accessibility to domain experts while maintaining the model’s explainability. Integration of AutoML and subject matter experts could advance artificial intelligence technology implementation in optimizing data-driven energy geosciences.

Funder

SDAIA-KFUPM JRC AI

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3