Machine learning model combined with CEEMDAN algorithm for monthly precipitation prediction
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Link
https://link.springer.com/content/pdf/10.1007/s12145-023-01011-w.pdf
Reference26 articles.
1. Cao J, Li J, Yin M et al (2022) Online reviews sentiment analysis and product feature improvement with deep learning[J]. ACM Trans Asian Low-Resour Lang Inf Process. https://doi.org/10.1145/3522575
2. Chen Y, Huang J, Sheng S et al (2018) A new downscaling-integration framework for high-resolution monthly precipitation estimates: Combining rain gauge observations, satellite-derived precipitation data and geographical ancillary data[J]. Remote Sens Environ 214:154–172
3. Dai H, Huang G, Zeng H, Yu R (2022) Haze risk assessment based on improved PCA-MEE and ISPO-LightGBM model. Syst 10(6):263
4. Das J, Jha S, Goyal MK (2020) On the relationship of climatic and monsoon teleconnections with monthly precipitation over meteorologically homogenous regions in India: Wavelet & global coherence approaches[J]. Atmos Res 238:104889
5. Ehteram M, Sammen SS, Panahi F et al (2021) A hybrid novel SVM model for predicting CO2 emissions using Multiobjective Seagull Optimization[J]. Environ Sci Pollut Res 28(46):66171–66192
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A forecasting method for corrected numerical weather prediction precipitation based on modal decomposition and coupling of multiple intelligent algorithms;Meteorology and Atmospheric Physics;2024-08-26
2. Aprendizaje por refuerzo como soporte a la predicción de la precipitación mensual. Caso de estudio: Departamento de Boyacá - Colombia;TecnoLógicas;2024-06-27
3. A short-term prediction model for photovoltaic power forecasting based on CEEMDAN-CS-LSTM;Eighth International Conference on Energy System, Electricity, and Power (ESEP 2023);2024-05-13
4. Times Series Forecasting of Monthly Rainfall using Seasonal Auto Regressive Integrated Moving Average with EXogenous Variables (SARIMAX) Model;Water Resources Management;2024-03-08
5. Applications of XGBoost in water resources engineering: A systematic literature review (Dec 2018–May 2023);Environmental Modelling & Software;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3