Online reviews sentiment analysis and product feature improvement with deep learning

Author:

Cao Jihua12,Li Jie1,Yin Miao1,Wang Yunfeng1

Affiliation:

1. School of Economics and Management, Hebei University of Technology, Tianjin 300401, China

2. Beihai Campus, Guilin University of Electronic Technology, Beihai 536000, China

Abstract

The text mining of online reviews is currently a popular research direction of e-commerce and is considered the next blue ocean. Online reviews can dig out consumer preferences and provide theoretical guidance for the improvement of product features. However, current research mostly focuses on sentiment analysis methods and rarely involves feature extraction and large-scale data recognition. This paper uses word segmentation technology to create a new feature extraction method. With long-short term memory(LSTM) neural network and latent dirichlet allocation(LDA) topic model, we proposes a product feature improvement model (Consumer online reviews-Extract short text-Sentiment analysis-Cluster feature, CESC). The model can derive the product features and attitudes that consumers prefer based on consumer online reviews, and use it to improve product features. According to the experimental results of three electronic products sold on the e-commerce platform, the model can effectively dig out consumer preferences for online reviews. Enterprises can improve the quality of products and services, better meet the needs of consumers, promote consumers’ consumption, and achieve the enterprises’ goals and values.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference31 articles.

1. Qian Fangli . E-commerce in china 2019 [EB/OL] . http://dzsws.mofcom.gov.cn/article/ztxx/ndbg/202007/ 20200702979478. shtml, 2020-07-02/2021-06-03. Qian Fangli. E-commerce in china 2019 [EB/OL]. http://dzsws.mofcom.gov.cn/article/ztxx/ndbg/202007/ 20200702979478. shtml, 2020-07-02/2021-06-03.

2. Understanding big consumer opinion data for market-driven product design

3. An Integrated Research Framework for Effect of EWOM

4. Lu Z. , Xia H. , Heo S. & Wigdor D ( 2018 ). You watch, you give, and you engage: A study of live streaming practices in china. ACM. https:// doi.org/ 10.1145/ 3173574.3174040 . Lu Z., Xia H., Heo S. & Wigdor D (2018). You watch, you give, and you engage: A study of live streaming practices in china. ACM. https:// doi.org/ 10.1145/ 3173574.3174040.

5. The effects of visual and verbal information on attitudes and purchase intentions in internet shopping

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3