Abstract
AbstractThe first pair of satellites belonging to the European Global Navigation Satellite System (GNSS)—Galileo—has been accidentally launched into highly eccentric, instead of circular, orbits. The final height of these two satellites varies between 17,180 and 26,020 km, making these satellites very suitable for the verification of the effects emerging from general relativity. We employ the post-Newtonian parameterization (PPN) for describing the perturbations acting on Keplerian orbit parameters of artificial Earth satellites caused by the Schwarzschild, Lense–Thirring, and de Sitter general relativity effects. The values emerging from PPN numerical simulations are compared with the approximations based on the Gaussian perturbations for the temporal variations of the Keplerian elements of Galileo satellites in nominal, near-circular orbits, as well as in the highly elliptical orbits. We discuss what kinds of perturbations are detectable using the current accuracy of precise orbit determination of artificial Earth satellites, including the expected secular and periodic variations, as well as the constant offsets of Keplerian parameters. We found that not only secular but also periodic variations of orbit parameters caused by general relativity effects exceed the value of 1 cm within 24 h; thus, they should be fully detectable using the current GNSS precise orbit determination methods. Many of the 1-PPN effects are detectable using the Galileo satellite system, but the Lense–Thirring effect is not.
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Astronomy and Astrophysics,Applied Mathematics,Computational Mathematics,Mathematical Physics,Modeling and Simulation
Reference65 articles.
1. Ashby, N.: Relativity in the global positioning system. Living Rev. Relativ. 6(1), 1 (2003)
2. Beutler, G.: Methods of Celestial Mechanics: Volume I: Physical, Mathematical, and Numerical Principles. Springer (2004)
3. Brumberg, V.A., Kopeikin, S.: Relativistic reference systems and motion of test bodies in the vicinity of the earth. Nuovo Cimento B 103, 63–98 (1989)
4. Bury, G., Sośnica, K., Zajdel, R.: Multi-GNSS orbit determination using satellite laser ranging. J. Geod. 93(12), 2447–2463 (2019)
5. Bury, G., Sośnica, K., Zajdel, R., Strugarek, D.: Toward the 1-cm Galileo orbits: challenges in modeling of perturbing forces. J. Geod. 94(2), 16 (2020)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献