Decadal evolution of GPS, GLONASS, and Galileo mean orbital elements

Author:

Zajdel RadosławORCID,Sośnica KrzysztofORCID

Abstract

AbstractWe examine the decadal evolution of GPS, GLONASS, and Galileo satellite orbital elements, including the semi-major axis, inclination, eccentricity, right ascension of the ascending node, and the argument of perigee. We focus on the long-term changes in Keplerian elements by averaging them over several complete revolutions forming mean orbital elements giving an explanation of the main perturbing forces for each Keplerian parameter. The combined International GNSS Service (IGS) orbits are employed which were derived in the framework of IGS Repro3 for ITRF2020 preparation spanning eight years from 2013 to 2021. The semi-major axis for GPS satellites is affected by a strong resonance with Earth’s gravity field resulting in a long-period perturbation similar to a secular drift. The semi-major axes of Galileo and GLONASS do not show any large-scale rates, however, Galileo satellites are affected by the Y-bias resulting in semi-major axis drifts. A significant perturbations due to solar radiation pressure affect the semi-major axis, eccentricity, and the argument of perigee. Notably, for Galileo satellites in eccentric orbits, the signal with a one-draconitic year is evident in the semi-major axis. The evolution of the mean right ascension of the ascending node and argument of perigee is primarily characterized by nearly linear regression mainly due to even zonal harmonics of the Earth’s gravity field. The long-term evolution of eccentricity and inclination does not follow a linear trend but exhibits clear oscillations dependent on the secular drift of the right ascension of the ascending node (for inclination) or the argument of perigee (for eccentricity). Additionally, the long-term perturbation of inclination reaches its maximum when the absolute value of the Sun’s elevation angle above the orbital plane ($$\beta$$ angle) is at its minimum, while the eccentricity reaches its minimum simultaneously with the minimum of the $$\beta$$ angle.

Funder

Uniwersytet Przyrodniczy we Wroclawiu

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3