Toward the 1-cm Galileo orbits: challenges in modeling of perturbing forces

Author:

Bury GrzegorzORCID,Sośnica KrzysztofORCID,Zajdel RadosławORCID,Strugarek DariuszORCID

Abstract

AbstractPrecise orbit determination demands knowledge of perturbing forces acting on the satellites of the Global Navigation Satellite Systems (GNSS). The metadata published by the European GNSS Agency for the Galileo satellites allow for the composition of the analytical box-wing model dedicated for coping with the direct solar radiation pressure (SRP), albedo, and infrared radiation (IR). Based on the box-wing model, we evaluated both the magnitude and the characteristic periods of accelerations caused by all the aforementioned forces. We assess which perturbations can be absorbed by the extended Empirical CODE Orbit Model (ECOM2) and what are the consequences of neglecting higher-order ECOM2 coefficients. In order to evaluate the impact of SRP, albedo, IR, and the navigation antenna thrust, we perform a series of precise Galileo orbit determination strategies for Galileo In-Orbit-Validation (IOV), Full Operational Capability (FOC), and two FOC satellites launched into eccentric orbits. The proposed box-wing model is capable of absorbing approximately 97% of the SRP in the Sun-satellite direction, whereas the rest can be mitigated by an additionally estimated small set of empirical parameters. The purely physical box-wing model does not fully handle satellite misorientation and re-radiation effects, such as Y-bias, solar panel rotation lag, that is the misalignment causing a constant acceleration perpendicular to the solar panel axis and the direction to the Sun. However, the box-wing model is especially crucial in terms of the absorption of the higher-order terms of SRP and stabilizes the orbit solutions during the eclipsing periods. Based on the SLR residual analysis, we found a systematic effect at the level up to 50 mm resulting from the omission of the high-order empirical orbit coefficients. We also found that the impact of the albedo, IR, and transmitter antenna thrust on the Galileo orbits reach the level of 5, 14, and 20 mm, respectively. Eventually, we obtain the overall accuracy of the Galileo-FOC orbits at the level of 22.5 mm, even for the eclipsing period for the solution which considers the box-wing model with the estimation of the constant empirical accelerations.

Funder

Narodowym Centrum Nauki

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Geochemistry and Petrology,Geophysics

Reference48 articles.

1. Arnold D, Meindl M, Beutler G, Dach R, Schaer S, Lutz S, Prange L, Sośnica K, Mervart L, Jäggi A (2015) CODE’s new solar radiation pressure model for GNSS orbit determination. J Geod 89(8):775–791. https://doi.org/10.1007/s00190-015-0814-4

2. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19:367–386

3. Beutler G (2004) Methods of celestial mechanics: volume I: physical, mathematical, and numerical principles. Springer, Berlin. ISBN: 3-540-40749-9

4. Bury G, Zajdel R, Sośnica K (2019) Accounting for perturbing forces acting on Galileo using a box-wing model. GPS Solut 23(3):74. https://doi.org/10.1007/s10291-019-0860-0

5. Dach R, Lutz S, Walser P, Fridez P (eds) (2015) Bernese GNSS Software Version 5.2. User manual. Astronomical Institute, University of Bern, Open Publishing, Bern

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3